Ecological Optimization and Parametric Study of an Irreversible Regenerative Modified Brayton Cycle with Isothermal Heat Addition

نویسندگان

  • Sudhir Kumar Tyagi
  • Subhash Chandra Kaushik
  • Vivek Tiwari
چکیده

An ecological optimization along with a detailed parametric study of an irreversible regenerative Brayton heat engine with isothermal heat addition have been carried out with external as well as internal irreversibilities. The ecological function is defined as the power output minus the power loss (irreversibility) which is ambient temperature times the entropy generation rate. The external irreversibility is due to finite temperature difference between the heat engine and the external reservoirs while the internal irreversibilities are due to nonisentropic compression and expansion processes in the compressor and the turbine respectively and the regenerative heat loss. The ecological function is found to be an increasing function of the isothermal-, sinkand regenerative-side effectiveness, isothermal-side inlet temperature, component efficiencies and sink-side temperature while it is found to be a decreasing function of the isobaric -side temperature and effectiveness and the working fluid heat capacitance rate. The effects of the isobaric-side effectiveness are found to be more than those of the other parameters and the effects of turbine efficiency are found to be more than those of the compressor efficiency on all the performance parameters of the cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...

متن کامل

Exergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle

In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...

متن کامل

Exergy Analysis and Second Law Efficiency of a Regenerative Brayton Cycle with Isothermal Heat Addition

The effect of two heat additions, rather than one, in a gas turbine engine is analyzed from the second law of thermodynamics point of view. A regenerative Brayton cycle model is used for this study, and compared with other models of Brayton cycle. All fluid friction losses in the compressor and turbine are quantified by an isentropic efficiency term. The effect of pressure ratio, turbine inlet ...

متن کامل

Thermodynamic Analysis and Optimization of a Novel Cogeneration System: Combination of a gas Turbine with Supercritical CO2 and Organic Rankine Cycles (TECHNICAL NOTE)

Thermodynamic analysis of a novel combined system which is combination of methane fired gas turbine cogeneration system (CGAM) with a supercritical CO2 recompression Brayton cycle (SCO2) and an Organic Rankine Cycle (ORC) is reported. Also, a comprehensive parametric study is performed to investigate the effects on the performance of the proposed system of some important parameters. Finally, a ...

متن کامل

Conceptual design of a super-critical CO2 brayton cycle based on stack waste heat recovery for shazand power plant in Iran

Conceptual design of a waste heat recovery cycle is carried out in attempt to enhance the thermal efficiency of a steam power plant. In the recovery system, super-critical an CO2 is employed as the working fluid operating in a Brayton cycle. Low grade heat rejected by the flue gases through the stack is used as the primary heat source, while a secondary heat exchanger utilizes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2003